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ABSTRACT

The Primas and Rayleigh-Schrodinger formulations of perturbation
theory are compared in considerable detail. The Primas approach
appears useful only in special cases where the operators involved
form a Lie algebra with a small number of elements. For Hamiltonians
with degenerate energy levels or for many body systems, the Primas

formalism does not appear practical.
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I. Introduction

This paper is intended as a comparison of the Rayleigh-Schrodinger

and the Primas™’

formulations of perturbation theory. If taken to
infinite order, the two procedures are exactly equivalent. However,
if truncated in some finite order, the two formulations give different
results. The advantages and disadvantages of each formulation will
be discussed, as well as the connections between them. Our viewpoint
is somewhat different from that of Robinson who has made some excel-

lent studies of the Primas method.3’4’5:'6’7’8

The exact Hamiltonian H and the unperturbed Hamiltonian H(O)

are assumed to each have a complete set of orthogonal eigenfunctions

and eigenvalues:

HY, = LY, =
©) ©)
\__f’)\}/n = @ 1’)n ' (1.2)

It is further assumed that there is a one-to-one correspondence
between the unperturbed and the perturbed states of the system and no
crossing of levels in going from the unperturbed to the perturbed
states. The unperturbed wave functions will be taken to be normalized

to unity
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but the normalization of the perturbed wave functions will be left un-
specified at this point. For convenience, it will be assumed that the

unperturbed states are all non-degenerate, although the problems

resulting from degeneracy will be indicated.

The perturbation operator V is defined by:

vzu-ag® (1.4)

The basic problem of perturbation theory is then to find the exact

wave functions EEn from a knowledge of the unperturbed wave functions

(o)
ﬂ?; . Hence, it is natural to seek an operator U which transforms

the unperturbed wave functions into the exact wave functions:

‘%n - U-‘ﬂ 1};:6) 0 (1.5)

Equation (1.5) is required to hold for any state n of the system.

It follows from equation (1l.1) that

ﬁ 41;0\ = E,_ 4’:0) (1.6)

where the transformed Hamiltonian H is defined by

1

E= UHU = (1.7)

The level shift operator 2" is defined by

V= H-He (1.8)

From equation (1.6) it is seen that the eigenvalues of 2/ are the

actual shifts in the energy levels caused by the perturbation:



W"gl{’“‘ = (E,,—-eﬁf’) 1}/”“” ' (1.9)

The Rayleigh-Schrodinger formulation now follows from expanding

1, . . 1
U in a power series in a real parameter A, as follows:

U«»a - “’h um—i + >\z Utz)—3+ }\3 Ut3)~|+m (1.10)

The Primas formulation follows from expanding U"1 in a somewhat

different manner:

. M\ (D) \33)
U_a -t (AS +‘}\S +NS 'ha..) (1.11)
These expansions are equivalent as the order becomes infinite, of
course, but they differ if the above forms are truncated after some
finite order of A . Each formulation will now be separately con-

sidered in greater detail,

1I. Ravleigh-Schrodinger Formulation

A. Preliminarv Remarks

Lf some of the unperturbed states are degenerate, the expansion

in equation (1.10) should actually be

-1 = -1 -l -
U - U() +}\U(ﬂ) +)\1u(z) +X§u(3) +. (2.1)

-1, .
where U(O) is an operator which transforms the zero-order wave

functions within each degenerate set to the correct linear combinations
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for the treatment of the degenerate problem. Since it is here
assumed that the zero=-order wave functions are all non-degenerate, we
-1
take U712 1,

The operators and functions introduced in Section I are assumed

to have power series expansions in }\ :

\Pn = XK@M DR AT Wl Fa it A N (2.2)

{oh

w

L

e, + 6:)4' N 6?'* ?Péf,”h,, (2.3)

E.
Vo= M7+ YHP+ P HD +. ., (2.4)

V= MWW YU YU (2.5)

From equation (1l.5) it is seen that the perturbed wave functions

are given by:

(k) -|
1-}'“ = Uub.) 1},:03 . 2= 1,23, ... (2.6)

?

and from equation (1.9) it is seen that the perturbed energies are the

eigenvalues of the level shift operators:

B4, h) 4}, 00)
'W n = ©x 77/{,,0 k=123 ... @D



B. The Perturbation Equations

From the defining equation (1.8), the level shift operators are

found to be

() ¥ 3 ©, ~
')}'l:: H()+ U”Hm‘i‘ H“Um i (2.8a)

‘)}"‘55 Hm + U“’Hm " Hm’ Uur' + UMHM + UmHm Um-l + HMU"’H (2.8b)

Bewm

k) 2 m ~m-n)~!
Ve 8 ym eyt (2.8K)

m=0Q n=

o

. -1 .
Note that since UU = = 1, it must be true that

)
L}(ﬂ n k)u) = 0 (2.9a)
U2+ U7+ U7 =0 (2.5)
& « ()~}
m ~m
¥ oumus” = o, @90
m=0

The familiar perturbation equations are obtained by applying the
©)
operator equations (2.8) to }Pn and using equations (2.6), (2.7),

and (2.9):

(Hw)" 62”) 1}/:) + (Hm“ei‘)) W:) =0 (2.10a)



(Hw;— e:;) lﬂ)nm ¥ (HM_E:M) }k:ﬂ + (Hm‘_e;ﬂ) ]},nco; =0 (2. 1009

& )
; (Hm)““e,ﬁm)> lk,‘& S O . (2. 10k)

C. Intermediate Normalization

The exact wave function in intermediate normalization will be

tmmen

oy (&)
written an and the operator which gives SEM from 1*; will be

. ==1 ’ . e . .
written U . EPn satisfies equation (1l.1) and also the inter-

mediate normalization condition:

CEAY) =1

With the expansion

?h = IB}::) DR AT Ay ‘{;’;‘:3)"‘”.” (2.12)

it is seen that equation (2.11) implies that

<1P:M 9 1F\:’)> = 0 3 f=123,,.. (2.13)

The perturbation equations (2.10) and the normalization requirement
57 v T

(2.11) determine E@m (and hence 9& 5 Vﬁ, 5+++) uniquely except

for an overall phase factor which is independent of A .

. . =1 .
The spectral resolutions of the various orders of U in this

normalizgtion are conveniently written as follows:



TS e ) R
u® = ; R. Q. G, D k=123, @w

(0)

where the Hermitian Rm is the reduced resolvent operator associated

with the state m

R® = ¥ | X ¥

€9) (o) 3 (2.15)

°

n €Emn —
{ntm) " "
where Q;k) is a Hermitian operator introduced and discussed by
Hirschfelder:10
W _ D) 0)
m = H i (2.16a)

Q= H-e2 4 (H-c)RO(H™- ) o

B-
% &) -s) (h-s)
Qm) = H “eff) +(§“‘S&%) ;zf (Hwt 2 €‘m S)R,:’Q:); (2. 16k)

and where C3n1 is a projection operator

6m = l‘l’,ff’X‘Y:f’l . (2.17)

One cannot usually find the operator U_1 itself, which may be
applied to any state of the system. Thus, it is customary to focus
attention on one particular state, say n , and attempt to find a wave

operator11 Wn which is defined so that



e

— (o) .
":'En = W, ¥, . (2.18)

From equation (2.14) it follows that

Lo

&
\Nln = |+ ) R:,O’Q:,M . (2.19)

Jk=|

Since the wave operator W is only meaningful when it is applied
{o}
to the function 1}; , it follows that Wﬁ (which is by no means

2
unique) can be represented by a function.l Thus, Dalgarno and

13 . .
coworkers ~ have had success in expressing

Rt

\I)n = (H )\F,,:”%a » F:,;ui—,.a) 1}’:) . (2.20)

are found by direct integration of the

(0)

perturbation equations. It is shown in the appendix that if H 7,

H(l), H(Z),... are real and €,é0) is non-degenerate, then Fil),
F(z),...
n

The functions F(l), F(z),...
n n

are real functions.

The reaction operator £ plays the role of the level shift

operator 1}’ if one considers only the state n , and is defined byll
t = (H - H(O)) Wn (2.21)

so that

En.-e’ = <1ny°)} tni W:)> . (2.22)



D. Complete Normalization

The exact wave function in complete normalization will be written

A A t0)
SEn and the operator which gives SEn from q@y will be written
L]

=L

-1 . s .
. f@n satisfies equation (1f1) and also the complete normalization

A
¥n> = |, (2.23)

condition

With the expansion

A

- (o ) (1) > () 3 e
H?n - Wh e&_)\%“ + N W,‘ +)\ 1”:-%.,,, (2.24)

it is seen that equation (2,23) implies

& A
oy | b 0R-m) -
< vca ' iwn m> =0 ; R= 1,2,3,,,, (2.25)

2

m=e

A
\Pc&)/
The usual set of functions n which satisfy the perturbation
equations and the complete normalization requirement are given in terms

mm
of the functions in intermediate normalization \P% by

P aad

A
w/ ')
Y= W,

(2.263)

A

1¢)) N Tl S
Wn ‘= W? ""‘?1"?@3’::’5%% ‘P;."’ (2.26b)

{

§ e s B TR

4]
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However, the functions in complete normalization are not uniquely

14
defined. It may be verified by direct substitution that the functions

given by

F.y A

a a)4 ¢ () yfpted

R AR Pl (2.272)
{;,(z) - .éi}(g); . 0) " t2) (a)) 'q)w)

w — Ta ¥ LGy Ty ke, - ( (2.270)

A
) (3)’ a (a) ) » (2) m ] {8 Y]
sl 1) )
‘}’h l)’ W L\, - ( ) 1}' , -ara

‘Vo)
" 3(2.27c)

where a(l), a(z)J a(3),... are arbitrary real numbers, also satisfy
n n

the perturbatlon equations and the complete normalization requirement.

Vi
Clearly, Ejn is the special case of Y where a( ) (2) (3)
A

.. = 0., 1In fact, ?En differs from @P only by a phase factor which

is a function of A,

b L oDl eRle bRtk &

\Y - 7(2.28)
®n s

In complete normalization, it is seen from equations (1.3), (1.5),

A

and (2,17), that the operator U 1 is unitary, i.e. that

A - H
vtayut, (2.29)

A
From the above discussion, however, it is seen that Ut is not uniquely

specified unless the constants aél), aéz) (3) .. are specified.
Following the usual restriction that aél) éZ) §3)= ao = 0 (50

A

’
that Em = En ), the spectral resolutions of the various orders of
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A+
U’ are given by:

“)f Z R ‘°’ m (2.30a)
Aart
U= % { R Qo = £ <02 QUROREQY] %”}} O, @

R = £ (A TQURTRY Q' | WG
h ot
V7= % 6.
h%-; W;@}B Qv:ﬂ () R(O)Q(ﬂ Q(I) lo)R:;]Qf:) W:)‘)

(2.30c)

¢

The analog of the wave operator in complete normalization will be

A
‘denoted by Wn , which ig defined so that

A

" ()
.\.]2,, = Wn 1}'“ . (2.31)

It follows from equations (2.30) that

Ao o
Wn = R:\% Q:) (2.32a)
. A 2) o o) L)
W= REQE -4 AP0 QURORIQY] lj’nw)> (2.32b)

A R (0) w) W (o» m ©) ©) A0 1},@ © o~ (1)
W;3)g %( LA Q B > R Q . 32C)
L <W ) j Qca) Rw) R %+ QURY co)Qm -‘P@> ,
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The analog of the reaction operator in complete normalization is given

by
A

n

so that

E.- e = {39 &, e

IIT. Primas Formulation1:2;3,15

Ay A
e = whmi - a(®
n n

(2.33)

(2.34)

This method lends itself most easily to the complete normalization

scheme, and hence complete normalization will be used in the remainder

of this paper. The method is then characterized by setting

where S 1is a Hermitian operator, so that
is

Hn
U = e

la)

and UY is automatically unitary. It is assumed that

expanded in a power series

S = ASP+ X' SP+ NS4,

s(1 @

Here, B s S
5(0)

(3)

problems of degeneracy.

(3.1)

(3.2)

S may be

(3.3)

se0. must all be Hermitian operators. A term

would be added to the right side of equation (3.3) to treat the

Multiplying out the power series which defines the exponential

iS . . .
operator e , the relationships between the Primas operators

(1)
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+
bt pf

N
S\L),,., and the Rayleigh-Schrodinger operators

are seen to be given by:

A
uer = -is® (3.4a)

ayt ) ,)1
&S + z( Su (3.4b)

C> -
i i

yt :
¢3 ""Q.S 4 la,Sm S‘a ﬁlswlsm ..L(S“)) (3.4c)

or equivalently:

-1SY = Cj“ﬂ (3.5a)
_iSu)
iSa) -

(3.5b)

& )'3' “w‘k’ 5T () ;)‘!' ( +
o ""%U o ‘LUuU( %_ m) s

I
> G-
g
=+
§
N
P
L
=
~

The level shift operators are given in terms of the Primas

(1 (2

operators, S B 5ees DY

'p’(,!)

-)j—(z) = H®, E.SM) Hm] +[i5cz:Hm)]+ Ji[is(g[isﬁ)ﬂlwﬂ (3.6b)

{f

H® +[i$“i He (3.62)
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o\ HPelis9 el e[isewe] « x[issLisoye]
‘)f = + [} Su}» HM] + Ji[isa: DS“: H“’]}* '.[iBS‘a,)ﬁS“;HMﬁ (3.6¢)
v £ [ise, [is®) [is, H1]]

(1)
2) ©

S sess Since the commutator of any diagonal operator with H is

Equations (3.6) may be regarded as equations which determine R

()
zero (in the representation formed by the qy; ), it is clear that the

diagonal parts of S(l), S(z),.., are not determined by equations (3.6)
and hence are arbitrary. It has been customary in the literature to
resolve this indeterminacy by requiring that the diagonal part of §

should be zero, i.e. that

V) slvey = 0. 3.7

for all states n .
The arbitrary diagonal elements of § are related to the arbitrary
(1) _(2)

real numbers a , a 500, which were introduced in the discussion

of the Rayleigh-Schrodinger formulation, If ﬁf is specified by

R A
Vo= Yyt ye (3.8)

then aél), aéz),oce are given in terms of the matrix elements of the
2
operators S(l), S( ),... by

ol = <“=iS‘°">M (3.9a)

1 = <-—i Sm‘}m (3.9b)
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7 = &is?), -+ LY <“5-5’“>.,e<°i3"’>m<“i5"2» 50

(1)

where the off diagonal matrix elements of -i$§ are given by

<M€Sm>j& - <%w»j H"| %.w>

- é-&t:) _ €3¢o) ) (3.10)

Equations (3.9) demonstrate clearly that the usual convention in
the Rayleigh-Schrodinger formulation, that the constants ail), aézz.,,
all vanish, is not equivalent to the usual convention in the Primas
formulation that the diagonal elements of S all vanish -- although
the conventions are equivalent in the first two orders. The difference,
of course, is merely in the choice of phase and hence is not physically
significant.

With the convention that S be off diagonal, the spectral resolu-

. . . 16
tions of various S operators are given by

2}’"‘“«-[1 s ]

i - 53 DX L e o

for k=1, 2, 3, ... (cf. equations (3.6)).
The Primas approach can be formulated in the domain of a Lie

‘algebral’z (the Rayleigh-Schrodinger cannot). Thus, the operators

. .o (2 . .
15(1), 1S( ), ... arise naturally as the solutions of commutator

. . . 17
equations. TFormal solutions of such equations are known. For

1
example, iS( ) satisfies the equation
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. _ d
[Hw), e,Sm] = V° (3.12)

where VOd is the off-diagonal part of V . The off diagonal solution

" of this equation is

(2] N () ..,‘ ‘do
tH od tH e wt

1S = =0 Lim e Ve dr (3.13)

Arthurs and Robinson4 have demonstrated the use of equation (3.13) in

. s .o (1 R R .
finding 1S( ) for a perturbed linear harmonic oscillator. However,
this method of solution does not appear to be practical in most problems

of interest.

1) (@)

In some special systems, it is possible to find § PR 3o
(and sometimes S itself) by an intuitive use of commutator algebra.
This happens when the operators involved form a finite Lie algebra
with a small number of elements. Several examples of the use of this

method have been reported in the literature.5’6’7’8’18

As examples,
. . 6 .
we quote here some results given by Robinson. The perturbations are

trivial in each case, as they merely represent changes of scale.

1) Perturbed linear harmonic oscillator:

) d*
H® = -f gn + £ B2 (3.14)

HY = Xz (3.15)
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IS? = ’Lﬁg(lx% H) (3.16)

S = -%‘S"yi%(ﬁlk}}@xfﬁi) a (3.17)

2) Perturbed hydrogenlike atom:

) _ 29t _ e 2001 Z
H = T2 3w Tr oty T SF (3.18)
}*ﬂ\ - 4

: = v (3.19)
ow _ A f 2 ., 3
ST = Z (r 3¢t 3 (3.20)

LS

(3.21)

§

f
<
—_—

{
s

e/

o2
i

+
pjw

(1) ()

As yet, the operators § s S ,... have been found only for
relatively simple systems. There does not appear to be any practical
method for finding them in complicated problems (e.g. many electron
systems).

In the Rayleigh-Schrodinger treatment, a great simplification is
achieved by restricting the wave and reaction operators to apply to
only one particular state of the system. However, the Primas formulation
does not lend itself so easily to such a simplification. If it is de-
sired to replace the Hermitian operators S(l), S(z),... with the

Hermitian'operators‘jgil),ﬁggz),... so that the equation



A _i()\stl)+)\zsta.)+“o )

P =e Ve =

is satisfied, then the operators iél),%éz),.

following equations:

c

) y3t0)
lst order: l \E} =

2nd order: (')2‘“ —‘}/(o)

@} e
bl

e O m\y(;)__

3rd order: ﬂw&, w n
gﬂ) (R)\‘]*)@)__

n-Swn in T

@ q w«n__

%h '%h w T

IN’=

)
mth order: 3:‘,39 . =

The requirements on the operators 2;511),%:12),

more stringent than those on the operators

SCON8Y+ 904 0)

S“Y

S D) S(s) ]P(o)
59y

S(l) Slh) S(\) ]})"‘0)
S W 5‘ (&) ‘l}} ()

S @) SQ) \P ‘:o)

S 3) 1}/ (o)
n

{o)
n
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(3.22)

.. must satisfy the

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.23e)

(3.23¢£)

(3.23g)

(3.23m)

Sti)sd). , Q@ ‘(y“’), i+j+.,,+,,0_ -,

wh ) §@
n n

are clearly much

in the

Rayleigh-Schrodinger formulation. Hence, one would expect it to be

much more difficult to find satisfactory operators 2 r(ll),,%(z)), .o
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Alternatively, one might attempt to replace the Hermitian opera-

tors S(l), S(2>,... by the operators Alél),AQéz),,.. where J&il)

2@

. A . 2
is a Hermitian operator of a given form, but ,Qé ), n

e )
n

s5.++ dare not
Hermitian. The operator - could not be taken to be a function,
say {}él), since i%él) would then have to be imaginary so as to be
antihermitian, while it is shown in the appendix of this paper that,

(1)
n

in the most usual circumstances, 1% must be a real function.

e (1 . -
Thus, -Laé ) might be taken to be an antihermitian operator of the

form
‘ ()] 0] )
LA, = 2(‘7'&.)1—‘?" v (3.24)
where fél) is a real function to be determined from the perturbation
equation (2.10a) (the form (3.24) for ~-i él) is not unique -- third,

fifth, seventh,... derivatives could be used in place of the first

4(1)

derivatives indicated). 1If the function Fn is known, so that

a

PO s Fope = 2008450 1, e

then fél) could be obtained by integration of a first order partial
differential equation,19 The method of characteristics is often
useful for this integration.

However, if —ixmél) igs taken to be an antihermitian operator
of the form (3.14), then -iAZiz) could not be a purely antihermitian

operator. It would have to have a Hermitian part to remove the error

in the second order caused by the fact that
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(o)
,a,f",a,‘," ‘P"" + S‘”S“’ V/,,‘” (3. 26)

(cf. equation (3.4b)). Even if a satisfactory operator A&éz) could
be found, it would be even more difficult to find 4Lé3), since it

would be required to remove the errors in the third order caused by
(1) (2) e . . o
A%l and ALn . Thus, the difficulties with this method are com-

pounded in each successive order,

IV. Approximate Transformations

The Rayleigh~Schrodinger and Primas formulations both give the

* in the limit as the order becomes infinite.

same transformation ﬁ
In practice, however, one must usually be content to solve a problem
up through some finite order k . The two formulations then give
different approximate transformations.

In the Rayleigh-Schrodinger formulation (in complete normalization)

the approximate operator

Nasy, T T L 5 Ayt
U™ = 1+ U R0+, 3 U 4.1)

is not unitary. The most obvious consequence of this is that the

corresponding approximate wave function

T &) “ws) 1 e ol et ke pe
P = (%0 ¥ = (1009 k0% M) B s

) \ 2 (Rs)
is normalized only through Q(Ak). The <Yh (k) Ym (&)

2k ) , .
contains contributions up to O h ), and is not normalized in the



21

k+1 2k . 20
orders % to A . As Yaris = shows, the use of such an un-

normalized wave function leads to the appearance of unlinked clusters

in expectation values., These unlinked clusters are not physically
meaningful (they cancel cut in the exact solution as the order becomes
infinite) and hence are not desirable in the theory.

The Primas formulation does not suffer from this drawback. The

approximate transformation here is given by

t i(kS‘% WSy )\&S‘k))

0%y = -

and is clearly exactly unitary. Thus, the corresponding approximate

wave function

‘L(xstl Atscz)_h“ +}\&Scﬂz))

?:‘P)(m = U(,,(&)le:) = e ]K:o) G

is normalized to unity, and one does not obtain the amnoying unlinked
clusters.

As a simple example of the different approximate transformationsg,
let us consider again a harmonic oscillator perturbed by X2 and a
hydrogenlike atom perturbed by %’ {see equations (3.12) - (3.21)).
Tables I and II give selected values of the following quantities for

the ground states of these systems:

E:,mm = <‘i E H? 1;TL,> (4.5)
ESCm = <€'“sm ” H’ "t f’) (4.6)

{t

i
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SN LIRS,
<‘P§°’ Y Al R R 7t (4.7)

]
0 ~
g
o=
L4
i

?Q
i

“” 2«
€, + ) egf\) + A\ eoa.)+ )z 6;3) ) (4.8)

(exact)

Here Eg is the exact energy of the perturbed system.

P
Eg )(1) and Eggs)(l) give the expectation values of the Hamiltonian

with the normalized wave function correct through first order in the

Primas and Rayleigh-Schrodinger formulations regpectively. Egp)(l)

RS
and Eg )(1) are both upper bounds to ngxact) and are both correct
through 0¢( XEB -- however they differ from ngxact) and from each

other in the fourth and higher orders. For purposes of comparison,
we also give Ee, the energy correct through O(’AB) but with no

contributions from the higher orders (Eo is not an upper bound to

Eg?xact)).

In Tables I and II, EéP)(l) is usually (but not always)

Egexact) than is EéRS)(l)c In general, there does not

® 1

closer to

appear to be any a_priori way of determining which of E or
(RS) . , .

E (1) will be more accurate. It is further possible that one

formulation could give a more accurate approximate expectation value

of some operator, but a poorer approximate energy, than the other

formulation. Evidently, a backlog of specific examples would be

required to make a decision about which formulation should be better

in a given problem.



Table I.

Energy of the ground state of a perturbed linear harmonic

LN
oscillator in atomic units (Hmz ’:E%x‘r + ‘:‘i’»&axl ¥ H(‘)z Xa')

calculated by four different methods (see equations (4.5) - (4.8)).

The results are given for selected values of k , with )\ = 1.

(exact) ®) (RS)
E E; (L) E; ) go
k = 0.5 0.75 6.84 3.25 7.25
k=1.0 0.87 0.96 1.00 1,00
k=5.0 2.598075 2.598079 2,598080 2.598080
Table ITI. Energy of the ground state of a perturbed hydrogenlike atom

2 NI b 204) _ 2 _
in atomic units (H --ji Sve J‘:%’:+_—(F-"—l £ H® ”"F)

calculated by four different methods (see equations (4.5) - (4.8)).

The results are given for selected values of =z , with A=1.

Eéexact) EgP)(l) EéRS)(l) E:o
z = 1 0.000 0.068 0.214 0.000
z = 2 ~-0.500 -0.477 -0.421 -0. 500
z =5 -8.000 -7.996 -7.985 -8.000
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V. Conclusion

In complicated problems (e.g. many body problems), it would be
Acyt a2y 1
ICOLETE ()

very difficult to find the operators

(2

5e+., which may be applied to any state of the system. From a
practical standpoint, it is usually necessary to focus attention on

one state and find wave and reaction operators which may be meaningfully
applied to only that state, This is easily done in the Rayleigh-

A + A +
Schrodinger formulation (where U(l) R U(z)

AL 82
n n

;... are replaced by
s+++), but, due to the difficulties discussed in Section III,

it would be very difficult to do in the Primas formulation (where one

<

, 2 (
would attempt to replace S(l), S(“)ﬁ,.u by j&él),jbéz),.., or xl;l),
2

The presence of degeneracy in the zero-order states makes it even
more necessary to restrict the analysis to one particular level (and
so to use the Rayleigh-Schrodinger formulation rather than the Primas
formulation). In finding the wave operator ﬁn’ it is only necessary
to consider the degeneracy of the state n under consideration. 1In
the Primas formulation (where it is usually necessary to find the full
transformation Gf which may be applied to any state), it would be
necessary to give special treatment to all the states which are de-
generate in zero order. There may be some mathematical trickery for

doing this, but otherwise the Primas approach is definitely not workable

for systems with degenerate zero order states.
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APPENDIX
We wish to show that the function Féﬁo which satisfies the
Ry _ ( ] . 0 1
equation 1#; ) = Fﬁﬁg vg g is a real function if H( ), H( ),
0 .
H(z),... are real and if € i ) is non-degenerate,
Proof:

First consider the equation

(Ho-e2) ¥ =0 . o

The fact that H(O) and €i§0> are real, together with the boundary
conditions for acceptable wave functions, insure that the solution
of equation (A.l) is unique, aside from the normalization. With the

requirement that'WéO) have unit norm, it may be written as
) o ¢ ()

where ¢r(10) is a real function which is a solution of (A.1) and has
unit norm, and S is a real number independent of X .

The solution V’ﬁl) to the equation
©) ) a) 0 ) ©
(H -€, }1}’“ +(H )V = 0O (A.3)

may be written as

w ) - ) u)) )
\Pn = (Rn A ]yn y (A.4)
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where Cél) is a complex number which is determined by the normaliza-

(1) 10,14
g

1
tion requirement on ]P Thus, the function Fi ) which

satisfies

1}’:) = F,,,m 1)’:) (A.5)

may be expressed as

@) .~ ) ) ) ) o ¢ )
Q) (Ran'+ c; }‘Pn R Qs P + c®
= ) = )
Fa y° n Ch v @9
Both R;O) and Qil) are real, so the first term on the right side

of equation (A.6) is real. 1In intermediate normalization, Cil) = 0,

Dimag )

while in complete normalization (setting Cél) = Cél%real)+ iC
Cél%real)= 0 but Cil%imagb is arbitrary (cf, equation (2.27a)) and

so can be taken to be zero. In either case, Fél) is then clearly

real.

The function 1P ékD may be written

&) _ ©) ~ () &) © G- bty (R gy o) )
-lyn - (Rn Qw t+ Cy )\h‘; + Gy lyn'“fcn W:h“‘fcn Wn (A.7)

where the constants Cél), Céz),... are determined by the normaliza-

10 i
tion. In intermediate normalization, all the Cé ) are zero. In

complete normalization (setting Cél) = Cil%xeal)+ iCél%imagJD, the
(i) . (1), .

(%1 {real) are not necessarily zero, but the Cn {imag.) (which are

arbitrary) may be taken to be zero. Thus, in either normalization we

may take Cél), i=1, 2,..,,15, to be real.

For the purposes of an inductive proof, we assume that the function

r D, g D
n n

¢
n are all real functions. Then y@ may be
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written

= { p“ (k) (-
%Lﬁ) - (RH)QH + Cn + Cn F“)+C'n AF‘I’ +-u * c—;? F;-, .)) | 1 I (A.S)

(k)

The function Fn which satisfies

an = F% ya 8.9

may then be written

-0 i) ) ‘°) )
F9 (ROQ® 4 +§1 ch s 1}',‘ @, oM i &
- @ @ (A.10)
" zlvn o ) 8
i i k)
All terms on the right side of (A.10) are real, and so Fn ig a

real function,
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